587. The Synthesis of some Perfluoroalkylbenzimidazoles.

By B. C. Bishop, A. S. Jones, and J. C. Tatlow.

Perfluoroalkylbenzimidazoles have been synthesised either by condensation of an o-diamine with a carboxylic acid, or by reduction of an N -(o-nitrophenyl)perfluoroalkanamide with concomitant cyclisation of the o-amino-derivative. 2 -Trifluoromethylbenzimidazole-4-carboxylic acid was obtained by oxidation of the 4 -methyl compound, 2 -carboxylic acids by oxidation of 2 -hydroxymethyl compounds, and 2 -amino-derivatives by the action of cyanogen bromide on 0 -diamines.
Syntheses of 4,5-bistrifluoromethyl-, 2-methyl-4,5-bistrifluoromethyl-, and 2,4,5-tristri-fluoromethyl-benzimidazoles have been reported. ${ }^{1,2}$ The finding that these compounds had appreciable antibacterial activity in vitro led to the synthesis of a number of new perfluoroalkylbenzimidazoles and their derivatives in order to correlate chemical structure with antibacterial activity. The synthetic work is now reported.

The benzimidazoles (I) listed in Table 1 were synthesised by the condensation of known o-diamines with carboxylic acids in the presence of strong acids. In general the yields of the 2 -heptafiuoropropyl derivatives were lower than those of the 2 -trifluoromethyl derivatives, and these were lower than those of 2-methyl or 2-hydroxymethyl derivatives. This trend can be ascribed to steric hindrance by the comparatively bulky perfluoroalkyl groups. The use of stronger acid than hitherto ${ }^{1-3}$ resulted in increased yields or shorter reaction times for the formation of the known perfluoroalkylbenzimidazoles.

(I)

(II)

(III)

An alternative method of synthesis was by hydrogenation of an N-(o-nitrophenyl)alkanamide, when reduction of the nitro-group and cyclisation to the benzimidazole occurred in one stage. Thus, N-(2-nitro-5-trifluoromethylphenyl)trifluoroacetamide (II), obtained by the action of trifluoroacetic anhydride on 3-amino-4-nitrobenzotrifluoride, was hydrogenated in the presence of Raney nickel to give 2,5-bistrifluoromethylbenzimidazole (I; $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{CF}_{3}, \mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{H}$) in 60% yield (from the 3 -amino-compound, cf. 48% yield by previous method ${ }^{2}$). 4-Methyl-2-trifluoromethyl-, 2 -heptafluoropropyl-4-methyl-, and 5 -methoxy-2-trifluoromethyl-benzimidazole were obtained similarly by reducing N -(2-methyl-3-nitrophenyl)trifluoroacetamide, N-(2-methyl-3-nitrophenyl)heptafluorobutyramide, and N-(4-methoxy-2-nitrophenyl)trifluoroacetamide, respectively (Table 3). However, the trifluoroacetamide (III) was reduced to the 2 -amino-compound, which did not cyclise. A possible explanation of this is that the hydrogen atoms of the 2 -aminogroup are hydrogen-bonded to the fluorine atoms. Also N-(4,5-dimethyl-2-nitrophenyl)trifluoroacetamide and N -(4-methoxy-2-nitrophenyl)heptafluorobutyramide were reduced to the corresponding amines which did not cyclise. The reason why the former failed to cyclise is obscure since the expected product, 5,6-dimethyl-2-trifluoromethylbenzimidazole ($\mathrm{I} ; \mathrm{R}^{1}=\mathrm{CF}_{3}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}$), was formed by the reaction of 4,5-diamino-o-xylene with trifluoroacetic acid.

2-Trifluoromethylbenzimidazole-4-carboxylic acid was obtained by oxidation of the

[^0]4-methyl compound, and 4- and 5-trifluoromethylbenzimidazole-2-carboxylic acids from the corresponding 2-hydroxymethyl derivatives which were obtained by condensation of the appropriate o-diamine with glycollic acid. The 2 -carboxylic acids were easily decarboxylated, even on recrystallisation, and analyses were therefore not satisfactory. The acids were characterised by means of their infrared spectra and decarboxylation products.

2-Amino-derivatives of benzimidazole were obtained by condensation of o-diamines with cyanogen bromide. ${ }^{4}$ This procedure was applied to the synthesis of 2 -amino-4-trifluoro-methyl- and 2 -amino-5-trifluoromethyl-benzimidazole. Attempts to convert the 2 -aminoderivatives into 2 -nitro-derivatives, by oxidation with either trifluoroperacetic acid or Caro's acid, were unsuccessful. Attempts were made, therefore, to obtain a 2-nitro-

(IV)

(V)

(VI)
derivative by the action of sodium nitrite on diazotised 2-amino-4-trifluoromethylbenzimidazole, but the product was 4 -trifluoromethylbenzimidazol-2(3H)-one (IV).

Benzimidazole derivatives were also obtained by the condensation of o-diamines with fluorine-containing dibasic acids. Thus, equimolar proportions of o-phenylenediamine and difluoromalonic acid gave benzimidazol-2-yldifluoroacetic acid (V; $n=1$). Similarly, tetrafluorosuccinic acid gave β-benzimidazol-2-yltetrafluoropropionic acid (V; $n=2$). Two molar proportions of 3,4-diaminobenzotrifluoride to one of difluoromalonic acid gave difluorobis-(5-trifluoromethylbenzimidazol-2-yl)methane (VI).

The benzimidazoles were characterised from their elemental analyses, infrared spectra, ${ }^{5}$ and, in most cases, ultraviolet spectra. Their antibacterial properties are described elsewhere. ${ }^{6}$

Experimental.

o-Diamines.-2,3- and 3,4-diaminobenzotrifluoride were obtained by Sykes and Tatlow's method. ${ }^{1}$ The other diamines were obtained commercially or prepared by established procedures.

Condensation of o-Diamines with Carboxylic Acids.-The diamine and an excess of the carboxylic acid were heated for 3 hr . at 100° with 10 N -hydrochloric acid. The solution was neutralised, and the benzimidazole which separated was filtered off and recrystallised. The results are shown in Table 1.

Reductive Cyclisation of N -(o-Nitrophenyl)perfuovoalkanamides.-The N-(o-nitrophenyl)perfluoroalkanamides in Table 2 were prepared by the action of either boiling trifluoroacetic anhydride or perfluorobutyric anhydride at 100° on the appropriate o-nitro-amines. The products were hydrogenated at 4 atm . at 20° for 90 min . in ethanol with Raney nickel catalyst (activity W-2) ${ }^{2}$ to give the benzimidazoles in Table 3. The structures of these were confirmed by infrared spectroscopy. When no benzimidazole was formed the product was probably an amino-compound. Attempts to cyclise these with strong acids failed.

2-Trifuoromethylbenzimidazole-4-carboxylic acid.-Potassium permanganate (250 mg .) in water (10 ml .) was slowly added to a well-stirred suspension of 4 -methyl-2-trifluoromethylbenzimidazole (160 mg .) in water (25 ml .) at $50-60^{\circ}$. The temperature was raised to 100° and the mixture stirred for 1 hr , cooled, acidified, and decolourised with sulphur dioxide. The solution was extracted continuously with ether, and the extract was dried and evaporated to dryness, giving the acid ($50 \mathrm{mg} ., 27 \%$), m. p. $250-254^{\circ}$ (from benzene) (Found: C, $\mathbf{4 7 . 0} ; \mathrm{H}, \mathbf{2 . 4 \%}$; Equiv., 235. $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $\mathbf{4 7 \cdot 0} ; \mathrm{H}, \mathbf{2} \cdot 2 \%$; Equiv., 230).

4-Trifuoromethylbenzimidazole-2-carboxylic acid.-2-Hydroxymethyl-4-trifluoromethylbenzimidazole (0.4 g .) was treated with potassium permanganate (0.6 g .) at 100°, as described above.

[^1]Table 1.
Preparation and properties of perfluoroalkylbenzimidazoles.

$$
\text { Calc. for } \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{5} \mathrm{~N}_{5}
$$
\[

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~F}_{7} \mathrm{~N}_{2} \\
& \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}
\end{aligned}
$$
\]

7onpord əч7 \mathcal{K} fund 07 pasn

$$
\begin{aligned}
& \text { 兩 }
\end{aligned}
$$

 Table 3.

Perfluoroalkylbenzimidazoles.
Found (\%)

웅
72
71
56
65
 Table 2. * Reaction carried out under nitrogen.
§ I.e., a naphthimidazole. Heated at

Wt. of
$\begin{array}{cc}10 \mathrm{~N}-\mathrm{HCl} & \begin{array}{c}\text { Solvent for } \\ \text { (ml.) }\end{array} \\ \text { cryst. }\end{array}$
"

EtOH
$\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& 41 \cdot 8 \\
& 41 \cdot 9
\end{aligned}
$$

4

1

petroleum

$\underbrace{0.6} \begin{array}{r}\mathrm{I} .97 \\ \mathrm{H} \\ \hline\end{array}$

$$
\begin{array}{cc}
(\%) & \text { M. p. } \\
45 & 212-214^{\circ}
\end{array}
$$

$$
41 \cdot 8 \quad 1 \cdot 6
$$

After acidification, and removal of manganese dioxide with sulphur dioxide, the clear solution was kept at 4° for 15 hr . The resulting precipitate was filtered off, to give the acid ($0.3 \mathrm{~g} ., 57 \%$), $\mathrm{m} . \mathrm{p} .115-120^{\circ}$ (decomp.) (from water) solidifying and remelting at $192-193^{\circ}$. This compound did not give the correct analysis because it could not be dried without decomposition (for evidence for its structure from infrared data see ref. 5). A sample, when heated at its melting point, gave 4-trifluoromethylbenzimidazole, m. p. $192-193^{\circ}$ (lit., ${ }^{1} 192-195^{\circ}$) (Found: C, 51.7; $\mathrm{H}, 2 \cdot 7$; F, 30.3. Calc. for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{~N}_{2}$: C, $51 \cdot 6$; H, 2.7; F, $30 \cdot 6 \%$).

5-Tvifluoromethylbenzimidazole-2-carboxylic acid.-2-Hydroxymethyl-5-trifluoromethylbenzimidazole (0.22 g .) was oxidised with potassium permanganate (0.32 g .) , as described above. The product ($0.18 \mathrm{~g} ., 72 \%$), m. p. $150-151^{\circ}$, could not be crystallised without decomposition. Its infrared spectrum ${ }^{5}$ indicated that it was a benzimidazole-2-carboxylic acid. Sublimation gave 6-trifluoromethylbenzimidazole, m. p. 117 - 119° (lit., ${ }^{1} 119^{\circ}$) (Found: C, $51 \cdot 4$; H, 2.4%).

2-Amino-6-trifluoromethylbenzimidazole.-A suspension of 3,4-diaminobenzotrifluoride (2 g.) in water (20 ml .) was treated with cyanogen bromide (1.2 g.$)^{7}$ with shaking. After all the cyanogen bromide had been added, the mixture was shaken for 30 min ., kept at 15° for 15 hr , made alkaline with dilute ammonia, and kept at 4° for a few hours. The solid was filtered off, to give the amino-compound ($1.5 \mathrm{~g} ., 65 \%$), m. p. $156-158^{\circ}$. This compound could not be recrystallised satisfactorily and did not sublime. However, when its ethereal solution was treated with trifluoroacetic anhydride in the usual way, N -(5-trifluoromethylbenzimidazol-2-yl)trifluoroacetamide monohydrate was obtained, m. p. 232-233 ${ }^{\circ}$ (decomp.) (from water) (Found: C, 38.1; $\mathrm{H}, 2 \cdot 4 . \quad \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 38 \cdot 1 ; \mathrm{H}, 2 \cdot 2 \%$). This compound decomposed when attempts were made to remove the water of crystallisation.

2-Amino-4-trifluoromethylbenzimidazole.-2,3-Diaminobenzotrifluoride (2 g.) was treated with cyanogen bromide (1.2 g .) as described above, to give the amino-compound ($1.3 \mathrm{~g} ., 60 \%$), m. p. $154-156^{\circ}$ (from benzene) (Found: C, $47 \cdot 6 ; \mathrm{H}, 3 \cdot 5 ; \mathrm{F}, 28 \cdot 7 . \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{3}$ requires $\mathrm{C}, 47 \cdot 7$; $\mathrm{H}, \mathbf{3} \cdot \mathbf{0} ; \mathrm{F}, \mathbf{2 8} \cdot \mathbf{3} \%$). This compound, on treatment with trifluoroacetic anhydride, gave N -(4-trifluoromethylbenzimidazol-2-yl)trifluoroacetamide monohydrate, m. p. 238-240 (decomp.) (from water) (Found: $\mathrm{C}, \mathbf{3 8} \cdot \mathbf{4} ; \mathrm{H}, \mathbf{2 \cdot 3} . \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, \mathbf{3 8} \cdot 1 ; \mathrm{H}, \mathbf{2} \cdot 2 \%$).

Attempted Conversion of the 2-Aminotrifluoromethylbenzimidazoles into 2-Nitro-compounds.(a) 2-Amino-6-trifluoromethylbenzimidazole was treated with trifluoroperacetic acid in boiling dichloromethane for 24 hr ., to give N-(5-trifluoromethylbenzimidazol-2-yl)trifluoroacetamide, $\mathrm{m} . \mathrm{p}$. and mixed m. p. $230-233^{\circ}$.
(b) 2-Amino-4-trifluoromethylbenzimidazole was treated at 40° with Caro's acid (prepared by adding ice-cold sulphuric acid to potassium persulphate) for 4 hr . The product was the sulphate of the starting material.
(c) A cooled solution of 2 -amino-4-trifluoromethylbenzimidazole (0.58 g .) in glacial acetic acid (6 ml .) was added slowly to a cooled solution of sodium nitrite in concentrated sulphuric acid (2 ml .). After stirring for 1 hr ., dry ether (50 ml .) was added, and the resulting precipitate filtered off, washed with glacial acetic acid then ether, and added to a suspension of cuprous sulphate (from cupric sulphate, 5 g .) in a solution of sodium nitrite (10 g .) in water (40 ml .). The mixture was stirred for 2 hr . and extracted with ether for 15 hr . The ethereal solution was evaporated to dryness, to give 4-trifluoromethylbenzimidazol-2(3H)-one, m. p. 270-272 ${ }^{\circ}$ (from benzene) (Found: C, 47.2; $\mathrm{H}, 2 \cdot 6 . \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 47 \cdot 6 ; \mathrm{H}, 2 \cdot 5 \%$).

Benzimidazol-2-yldifluoroacetic Acid.-An intimately ground mixture of o-phenylenediamine (0.54 g .) and difluoromalonic acid (0.78 g .) was heated at 170° for 5 min . The mixture was cooled, triturated with 4 N -ammonia (25 ml .), and filtered, and the filtrate was acidified and extracted for 15 hr . with ether. The ethereal extract was evaporated to dryness, to give the acid hemihydrate (0.58 g ., 55%), m. p. $163-164^{\circ}$ (decomp.) (from water) (Found: C, $48 \cdot 7 ; \mathrm{H}$, $3 \cdot 3 \%$; Equiv, 228. $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 48 \cdot 8 ; \mathrm{H}, 3 \cdot 2 \%$; Equiv, 230).
β-Benzimidazol-2-yltetrafluoropropionic Acid.-o-Phenylenediamine (0.2 g .) was treated with tetrafluorosuccinic acid and the product isolated, as for the previous experiment, to give the acid monohydrate ($0.2 \mathrm{~g} ., 39 \%$), m. p. $255-256^{\circ}$ (from water) (Found: C, 42.9; H, 2.7. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 42 \cdot 8 ; \mathrm{H}, 2.9 \%$).

Difluorobis-(5-trifluoromethylbenzimidazol-2-yl)methane.-A mixture of 3,4-diaminobenzotri fluoride (0.8 g .) and difluoromalonic acid (0.93 g .) was heated at 150° for 5 min ., cooled, and dissolved in a little acetone. 4 N -Ammonia (50 ml .) was added, the mixture was filtered, and the

[^2]
3080 Lewis and Steiner: Kinetics and Mechanism of the Thermal

filtrate acidified and extracted with ether ($5 \times 25 \mathrm{ml}$.). The ether extract was evaporated, leaving an oil which crystallised from water to give the difluoromethane monohydrate (0.13 g ., 14%), m. p. $156-158^{\circ}$ (Found: C, $46 \cdot 5 ; \mathrm{H}, \mathbf{2 \cdot 6} . \mathrm{C}_{17} \mathrm{H}_{8} \mathrm{~F}_{8} \mathrm{~N}_{4}, \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 46 \cdot 6 ; \mathrm{H}, \mathbf{2 . 3} \%$). There was no acidic group titratable in the range expected for a carboxyl group.

Infrared Spectra.-Some of these have been discussed elsewhere. ${ }^{5}$ The spectra of the other benzimidazoles were characteristic, showing a broad band at about $2600 \mathrm{~cm} .^{-1}$, due to a hydrogen bond of the type $\mathrm{NH} \cdots \mathrm{N}$, and a series of three or four bands in the region $1500-1630 \mathrm{~cm} .^{-1}$. The absence of a strong band at $1600-1650 \mathrm{~cm} .^{-1}$ showed that the compounds were not amides. The spectrum of 4 -trifluoromethylbenzimidazol- $2(3 H)$-one showed a strong band at $1700 \mathrm{~cm} .^{-1}$ which was presumably due to the $C=O$ group.

The authors thank Dr. K. J. Morgan for advice on the interpretation of infrared spectra, and the D.S.I.R. for a Research Studentship (to B. C. B.).

Chemistry Department, The University, Edgbaston, Birmingham 15.

[^0]: ${ }^{1}$ Sykes and Tatlow, J., 1952, 4078.
 ${ }^{2}$ Belcher, Sykes, and Tatlow, J., 1954, 4159; Fernandez-Bolaños, Overend, Sykes, Tatlow, and Wiseman, J., 1960, 4003.
 ${ }^{3}$ Smith and Steinle, J. Amer. Chem. Soc., 1953, 75, 1292; Lane, J., 1955, 534.

[^1]: ${ }^{4}$ Pellizzari and Gaiter, Gazzetta, 1918, 48, II, 151; Leonard, Curtin, and Beck, J. Amer. Chem. Soc., 1947, 69, 2459.
 ${ }^{5}$ Morgan, $J ., 1961,2343$.
 © Biship, Chelton, and Jones, Biochem. Pharmacol., 1964, 13, 751.

[^2]: ${ }^{7}$ Org. Synth., Coll. Vol. III, 1955, p. 662.

